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Solitary waves in Bragg gratings with a quadratic nonlinearity
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We study the formation of solitary waves in quadratic nonlinear materials where the dispersion is provided
by linear mode coupling mediated by a Bragg grating. We show that solitary wave solutions can be analytically
found provided that the coupling of the second-harmonic waves considerably exceeds that of the fundamental
ones. Furthermore, we numerically determine solitary wave solutions for the general case. These solutions
prove to be close to the analytical ones. A nontrivial property of Bragg grating solitary waves is that they do
not fill the complete parameter space where exponentially decaying functions are allowed to exist. Instead, we
find internal boundaries inside this parameter space where the soliton intensity diverges. Moreover, double-
hump solutions are found where a numerical propagation procedure shows that some of them are fairly robust.
@S1063-651X~97!03404-1#
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I. INTRODUCTION

The study of temporal and spatial solitons@or solitary
waves~SW’s!# is among the fascinating subjects of nonline
optics. They represent a stable and robust equilibrium s
in time or space that is due to the balance of linear disper
or diffraction and nonlinear phase modulation. Hence
nature of solitary waves is determined by the interplay
tween the linear and nonlinear properties of the environm
As far as the linear properties are concerned the anoma
group velocity dispersion~GVD! of optical fibers made from
fused silica@1# or the diffraction taking place in planar wave
guide structures@2# can be exploited. Most recently, it ha
been shown that the huge anomalous dispersion require
temporal SW formation in a short channel waveguide can
achieved by a proper waveguide tailoring@3#. There is an-
other option left to generate a large GVD in configuratio
where material dispersion merely plays a marginal role, v
the linear coupling of two modes with dissimilar group v
locities as it occurs in an asymmetric waveguide coupler@4#
or in Bragg gratings@5#.

With regard to the nonlinearity induced phase modulat
the traditional approach is based on the instantaneous c
~Kerr! nonlinearity as far as nonresonant nonlinearities
concerned. If this specific nonlinearity arises in any of t
dispersive or diffractive configurations various solitons
SW’s have been shown to exist as, e.g., temporal@1# and
spatial Schro¨dinger solitons@2# or Bragg grating SW’s@5#.

During the past several years materials with large inst
taneous, quadratic nonlinearities have attracted a great
of interest. It has been shown that the phase modulat
which appears simultaneously to the amplitude modula
in the consecutive up and down conversion process, m
even balance the self-diffraction of a beam in a planar wa
guide@6# or in a bulk material@7# leading to the formation of
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SW’s where the fundamental frequency~FF! and the second-
harmonic~SH! frequency beams are mutually trapped. The
is a bundle of theoretical papers@8–19# where the explicit
shape of these types of SW’s, their stability and collisi
behavior are studied provided that diffraction or dispers
can be described in the parabolic approximation. In orde
generate temporal SW’s a control of both the phase
group velocities of FF and SH waves has to be achie
simultaneously. However, in most realistic materials t
group-velocity mismatch cannot be compensated and a
rimental temporal walk-off between the FF and SH wa
occurs. One opportunity to overcome this problem exists
exploiting the huge dispersion that is due to the mode c
pling in Bragg gratings. So, there is, on the one hand
practical need to look for SW solutions in that configuratio
but, on the other hand, the search for these solutions i
fundamental interest, too.

In cubic nonlinear materials these SW solutions have b
theoretically studied for many years~see@20# and the refer-
ences therein,@21,22#! and experimentally proven to exis
lately @5#. It is now well understood that these SW’s can
excited close to the linear photonic band gap. The SW so
tions exhibit a large chirp@22#, which guarantees that th
frequency of the low intensity tails is located within the g
preventing the coupling to the linear radiation.

A first attempt to study Bragg grating SW’s in a quadra
nonlinearity was made in@23#. However, this paper deal
only with the limit of large phase mismatch where the orig
nally quadratic nonlinearity degenerates to a cubic one
the familiar SW solutions@20–22# appear. Evidently, in re-
stricting to this particular limit one misses the genuine
fects evoked by the quadratic nonlinearity that are expec
to show up close to phase matching. But more importan
the SW solutions found for that particular limit are not com
patible with the original equations that we are going to sh
later.

We have yet to mention that switching and bistability
Bragg gratings with a quadratic nonlinearity were inves
4730 © 1997 The American Physical Society
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55 4731SOLITARY WAVES IN BRAGG GRATINGS WITHA . . .
gated numerically@24#. There the emphasis was not paid
SW solutions because the grating-induced dispersion for
SH wave was neglected.

The objective of the present work is a systematic analy
of SW solutions in quadratic nonlinear materials where
dispersion is generated by a Bragg grating mediated coup
of forward and backward propagating modes. The pape
structured as follows. In Sec. II we derive the basic set
equations describing the dynamics of the field envelope
the configuration under investigation. Then we discuss
requirements and constraints for bright SW solutions to ex

In Sec. III we develop an approximate model that rep
sents the natural ‘‘cubic’’ limit and allows for analytical so
lutions. It is based on the assumption that the linear coup
between both SH waves considerably exceeds that betw
the FF waves.

Eventually we use numerical means to solve the ba
system of equations. We compare the domains where
solutions may exist with that found in the approxima
model. Furthermore, we study in detail a few of the S
solutions and check their robustness by propagating th
numerically.

II. THE BASIC EQUATIONS

We consider forward and backward propagating mode
a waveguide at both the FF and the SH. These modes
be coupled by a Bragg grating that is etched into the cladd
layer of an approximately phase-matched waveguide~see
Fig. 1!. This corresponds, likewise, to an effective ind
grating. The fundamental grating period isLFF. The respec-
tive grating vector is given byKB52p/LFF. The grating is
designed such that forward and backward propagating
waves are just coupled by this vector. Obviously, the
waves are then coupled by the second Fourier compone
the grating that is twice the grating vector. Usually the c
responding coupling efficiency is less than that for the
waves. If required, it can be enhanced by introducing a s
structure, e.g., another groove, into each unit cell as show
Fig. 1.

Evidently, the FF Bragg grating may cause radiati
losses for the SH. These losses can be suppressed b
appropriate design of the grating shape. Another loss me
nism for the FF wave can be attributed to the so-called Ch
enkov SH generation where the SH wave leaves the wa

FIG. 1. Schematic of a double periodic grating that mediates
coupling of forward and backward propagating modes at the FF
the SH frequency~LFF: grating period!.
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guide in a direction perpendicular to the waveguide surfa
These losses are important for fairly thin waveguides on
In the following we will neglect both loss mechanisms
well as absorption and assume that both the FF and the
modes are guided.

The complete optical field is given as a superposition
forward and backward propagating fields at both frequenc
as

EW ~YW ,Z,T!5@E1
FF~Z,T!e~ i /2!KBZ2 i ~VB1V!T

1E2
FE~Z,T!e2~ i /2!KBZ2 i ~VB1V!T# fWFF~YW !

1@E1
SH~Z,T!eiKBZ22i ~VB1V!T

1E2
SH~Z,T!e2 iKBZ22i ~VB1V!T# fWSH~YW !1c.c.,

~1!

whereT is the time andYW denotes the transverse coordinate
It is convenient to separate fastly oscillating terms, which
related to the grating~Bragg! vectorKB of the FF grating,
with the periodLFF and to the respective Bragg frequen
VB in the center of the linear band gap.VB serves as a
reference frequency whereas the actual frequency of the
lution is given byVB1V. The grating vectorKB is deter-
mined by the period of the FF gratingLFF and shall obey the
Bragg condition for the propagation constant of the FF mo
K~V! at the Bragg frequency. Hence we have

KB5
2p

LFF
and 2K~VB!5KB .

Moreover, we have introduced the slowly varying envelop

E1/-
FF/SH(Z,T) and the vectorial mode profilesfWFF/SH. In the

framework of the coupled-mode approach these profiles
determined for an averaged~with respect to the propagatio
direction! profile and do not change upon propagation. T
nonlinearly induced polarization shall not be influenced

the grating and is determined by the field profilesfWFF/SH
only. The additional polarization induced by the grating r
sults in a coupling between forward and backward propag
ing waves. Typically the waveguides are only a few cen
meters long and the pulses are in the picosecond reg
Hence we can assume the group velocitiesVFF andVSH of
the fundamental and second-harmonic waves to be cons
in the frequency domain under consideration. Consequen
higher-order dispersion is neglected.

The resulting equations of motion for the slowly varyin
envelopes of the optical fields~E1/2

FF/SH! read now as~for a
more detailed derivation see, e.g.,@1# Chap. 10.6.3., pp.
451–459;@20# Chap. 3.3, pp. 212–217@25,26#!

05F i 1

VFF

]

]T
1 i

]

]Z
1

V

VFF
GE1

FF1kFFE2
FF1xeff~E1

FF!*E1
SH,

~2a!

05F i 1

VFF

]

]T
2 i

]

]Z
1

V

VFF
GE2

FF1kFF* E1
FF1xeff~E2

FF!*E2
SH,

~2b!

e
d
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05F i

VSH

]

]T
1 i

]

]Z
1K~2VB!2KB1

2V

VSH
GE1

SH1kSHE2
SH

1xeff~E1
FF!2, ~2c!

05F i

VSH

]

]T
2 i

]

]Z
1K~2VB!2KB1

2V

VSH
GE2

SH1kSH* E1
SH

1xeff~E2
FF!2, ~2d!

wherexeff is the effective nonlinear coefficient of the wav
guide. The coupling coefficientskFF andkSH are proportional
to the first and second Fourier components of the grating
general they are complex valued. One phase can be rem
by a simple phase transformation but the ratiokSH/kFF is left
complex. This phase may lead to qualitative changes of
respective SW solutions. But the phase vanishes for grat
with mirror-symmetric unit cells. For the sake of clarity an
simplicity we restrict ourselves to that case and assume
ratio to be positive.

Then we may further reduce the number of free para
eters of the solution by a proper normalization as

z5kFFZ, t5VFFkFFT,

U1/25
xeff

kFF
E1/2
FF , V1/25

xeff

kFF
E1/2
SH ,

q5
K~2VB!2KB

kFF
, k5

kSH

kFF
, v5

V

kFFVFF
, v05

VSH

VFF
,

wherek is the scaled coupling constant. The scaled wa
vector mismatch and the ratio of the group velocities at
Bragg frequency are denoted byq andv0, respectively. The
normalized equations of motion for the amplitudes at the
~U6! and the SH~V6! read now as

05F i ]

]t
1 i

]

]z
1vGU11U21U1* V1 , ~3a!

05F i ]

]t
2 i

]

]z
1vGU21U11U2* V2 , ~3b!

05F iv0 ]

]t
1 i

]

]z
1q1

2

v0
v GV11kV21U1

2 , ~3c!

05F iv0 ]

]t
2 i

]

]z
1q1

2

v0
vGV21kV11U2

2 . ~3d!

Before we proceed with the solution of Eqs.~3!, we iden-
tify domains where bright solitary waves that moving with
velocity v ~scaled withVFF! may exist. A suitable criterion
consists in requiring that the tails of these localized obje
where the nonlinearity is negligible, have to decay expon
tially for both frequencies. Because we expect that the
solutions exhibit a chirp we introduce the frequency of t
linear tails as the frequencyv ~2v! of the FF ~SH! SW’s.
Now, the existence criterion may be formulated more p
cisely. Both frequenciesv and 2v have to be situated within
the stop bands of the respective Bragg gratings. Now
In
ed

e
gs

is

-

-
e

F

s,
-

-

e

linearized version of Eqs.~3! can be used to get the respe
tive domains in the velocity-frequency plane as

v21v2,1 for the FF ~4a!

and

F1k S q1
2

v0
v D G21S vv0D

2

,1 for the SH. ~4b!

These conditions define a circular and an elliptic dom
where their centers are separated with respect to thev direc-
tion if the wave-vector mismatchq is nonzero~see Fig. 2!.
The width of the gap for the SH is proportional to the ratio
the coupling constantsk. Evidently, bright solitary waves
may exist in the overlap region only~shadowed area in Fig
2!. The wave-vector mismatch, the ratio of the coupling co
stants and that of the group velocities of the unperturb
waveguide modes determine the size of this region. Beca
the solutions are expected to be chirped, the averaged
quency of the SW can deviate from the SW frequenciesv
~2v! and need not be situated inside the stop band.

The system of Eqs.~3! can only be solved numerically
But in Sec. III we are going to show that a considerab
simplification can be achieved and that analytical solutio
can be derived, provided that certain constraints concern
the linear coupling are introduced. Moreover, it will turn o
that, at least qualitatively, most of the pertinent features
Bragg grating SW’s can be derived from this analytic
model.

III. A SIMPLIFIED ANALYTICAL MODEL

The so-called ‘‘Schro¨dinger limit’’ for SW’s in uncorru-
gated quadratic nonlinear media~henceforth termed as ‘‘con
ventional SW’s’’! @11–14# is based on the assumption th
for large phase mismatch the derivatives in the equation
motion for the SH wave can be omitted. Thus propagat
effects with respect to the SH component can be negle
and the SH wave sticks rigidly at the FF wave. Hence b
the FF and the SH wave merely experience a phase mod
tion similar to that in cubic nonlinearities. Unfortunately, th

FIG. 2. Maximum range in the velocity-frequency plane whe
bright solitary waves may exist~shadowed area!.
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55 4733SOLITARY WAVES IN BRAGG GRATINGS WITHA . . .
straightforward extension of this approach to Bragg grati
fails. A large increase of the mismatch evokes a separatio
the domains of existence of SW’s@see Eqs.~4! and Fig. 2#
and prevents them from overlapping. This fact has b
overlooked in@23#.

However, in inspecting Eqs.~3! we find another option, to
neglect propagation effects for the SH wave in Bragg g
ings, viz, to increase the ratio of the coupling coefficientsk.
This limit requires the coupling between the SH modes to
considerably larger than that between the FF modes. T
condition can be easily met by a proper grating design. T
modulus of the wave-vector mismatchq must only be
smaller than the ratio of the coupling coefficients, but ne
not be small in general. In using the simplified system
equations, one has to keep in mind that the domains of
istence of SW’s are defined by Eqs.~4!, i.e., optional solu-
tions outside the overlap region are meaningless. In part
lar, this concerns the SW velocityv, which must not exceed
the ratio of the group velocitiesv0 @see Eqs.~4!#. We note
that the limit of largek reduces also the scattering losses
the SH evoked by the grating for the FF. Now we neglect
derivatives in the SH part of our basic system~3! and get for
the SH, fields

V1/25
2U2/1

2 1DU1/2
2

k~12D2!
, ~5!

where we have introduced the effective wave vector m
matchD as a function of the SW frequencyv,

D5
1

k S q1
2

v0
v D . ~6!

From Eqs.~4! it immediately follows thatD2,1 has to
hold and consequently from Eq.~5! that the nonlinear cros
coupling is the dominant effect. This means that a FF w
in forward direction preferably generates a SH wave, wh
moves backward and vice versa. Now we substitute Eq.~5!
into the first two equations of Eqs.~3! and obtain the simpli-
fied system describing the evolution of the FF waves as

05F i ]

]t
1 i

]

]z
1v Ga11a22a1* a2

2 1Dua1u2a1 ,

~7a!

05F i ]

]t
2 i

]

]z
1vGa21a12a2* a1

2 1Dua2u2a2 ,

~7b!

where we have used the normalization

a1/25
U1/2

Ak~12D2!
. ~8!

The system~7! describes the evolution of the FF field
coupled by a Bragg grating and is subject to an effect
third-order nonlinearity. But unlike in the ‘‘Schro¨dinger
limit’’ ~large mismatch! for conventional SW’s@11–14#, the
evolution equations differ considerably from their ‘‘cubic
counterpart~Bragg SW’s in Kerr media@20–22#!. The main
difference consists in the dominant role of nonlinear ene
s
of

n

t-

e
is
e

d
f
x-

u-

f
e

-

e
h

e

y

exchange that is due to cross coupling. With respect to
normalized FF amplitudes~8!, this contribution to the non-
linear response is independent from the size of the w
vector mismatch, but the mismatch still enters via the n
malization. Self-phase modulation is only of minor impo
tance because ofuDu,1. Like in the Schro¨dinger limit for
conventional SW’s, self-phase modulation appears only
the effective wave-vector mismatch is nonzero. Here,
strength varies with the SW frequency. Cross-phase mod
tion does not appear at all whereas in Kerr media it is tw
as strong as the self-phase modulation. The simplified sys
of Eqs. ~7! exhibits three integrals of motion that represe
the pulse energyE, the HamiltonianH, and the pulse mo-
mentumP, respectively,

E5E
2`

`

@ ua1u21ua2u2#dz, ~9a!

H5
1

2 E
2`

` F i S a1*
]a1

]z
2a2*

]a2

]z D1v~ ua1u21ua2u2!

12a1a2* 2a1
2 a2*

21
D

2
~ ua1u41ua2u4!Gdz1c.c.,

~9b!

P5
i

2 E
2`

` Fa1*
]a1

]z
1a2*

]a2

]z Gdz1c.c. ~9c!

We look for stationary solitary waves moving with th
velocity v:

a1/2~z,t !5ã1/2~x! with x5z2vt. ~10!

The resulting ordinary differential equations read as

05F i ~12v !
]

]x
1vG ã11ã22ã 1* ã 2

2 1Duã1u2ã1 ,

~11a!

05F2 i ~11v !
]

]x
1vG ã21ã12ã 2* ã 1

2 1Duã2u2ã2 .

~11b!

They exhibit two integrals of motion for the amplitude
A1/2(x)5uã(x)u and phasess1/2(x)5arg„ã(x)…:

Ẽ5~12v !A1
2 2~11v !A2

2 ~12!

and

H̃5v~A1
2 1A2

2 !12A1A2cos~c!2A1
2 A2

2 cos~2c!

1
D

2
~A1

4 1A2
4 !, ~13!

which are related to the conserved quantitiesE and H of
system~7!, respectively. Here we have introduced the pha
differencec(x)5w1(x)2w2(x).

Using the integrals of motionẼ andH̃ we solve the sys-
tem ~11! by a procedure similar to that outlined in@22#. Our
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approach differs in that we focus on the phase evolution
and then use the conservation laws to get explicit express
for the intensity.

For bright SW’s being of concern here both conserv
quantities equate to zero for arbitraryx. Because ofẼ50 we
may introduce an effective intensity as

I5~12v !A1
2 5~11v !A2

2 . ~14!

Moreover,H̃50 can be used to express the intensity
terms of the phase differencec(x),

I52A12v2
s1cos~c!

2 cos2~c!212d
, ~15!

where we have introduced

s5v/A12v2 ~16!

and

d5D~11v2!/~12v2!. ~17!

Obviously the constraint~4! imposed on the FF wave implie
21,s,1 whereas the modulus of the detuning parameted
may exceed unity althoughuDu,1 holds.

We have to determine the phase differencec(x). By in-
serting Eqs.~10!, ~14!, and~15! into the evolution equations
~7!, we end up with the differential equation

dc

dx
52

2

A12v2
@s1cos~c!#. ~18!

Depending on the initial conditions@c1~0!50 or
c2~0!5p# we get the respective solutions

c1~x!522 arctanH S 11s

12s D 1/2tanhFxS 12s2

12v2 D
1/2G J ,

~19a!

c2~x!5p12 arctanH S 12s

11s D 1/2tanhFxS 12s2

12v2 D
1/2G J .

~19b!

For obvious reasons we termc1 andc2 in-phase or an-
tiphase solutions, respectively. As expected, the asymp
behavior of the phase difference@c~6`!57arccos~2s!# en-
tails vanishing intensities forx56` because of Eq.~15!.

It is worth mentioning that Eq.~18! likewise holds for a
genuine Kerr nonlinearity and any ratio between self- a
cross-phase modulation, i.e., the phase difference betw
forward and backward propagating waves in various Bra
systems does not depend on the specific type of the c
nonlinearity. On the contrary, the relation between the ph
difference and the intensity is critically affected by the for
of the cubic nonlinearity. In particular, in the Kerr case, E
~15!, reads asI;@s1cos~c!#.
st
ns

d

tic

d
en
g
ic
e

.

Eventually, the phases are determined from the phase
ference by an additional integration and we get

FIG. 3. Domain of existence of SW’s derived from the analyt
cal model ~v051!, ~a! negative mismatch,~b! positive mismatch
~thick solid line, singularity characterized byudu,1; thick dashed
line, singularity characterized byudu.1; thin solid line within the
shadowed area, separates single from double-hump solutio
crosses, the locations of the solitary waves shown in the next
ure!.
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FIG. 4. Shapes of differen
types of SW’s derived from the
analytical model~v051!; ~a! in-
phase single hump,~b! in-phase
double-hump near a boundar
with udu,1, ~c! in-phase double-
hump near a boundary withudu.1,
and ~d! antiphase.
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Now, in the framework of the approximation used he
the solitary wave solutions are completely determined
Eqs.~15!, ~19!, and~20! keeping in mind the normalization
~8! and the relation between the FF and SH waves Eq.~5!. It
is evident that the SW solutions exhibit a chirp familiar fro
the Bragg grating SW’s in cubic materials@22#.

A necessary condition for bright SW’s to exist is given
Eq. ~4!, which was derived from linear arguments. Now t
question arises if this condition is sufficient or if there a
additional constraints in the velocity-frequency plane i
posed by the particular form of the nonlinearity. To find th
out we primarily make use of Eqs.~15! and~19!. The inten-
sity distribution is completely determined by the cosine
the phase differences. From Eq.~19! we get that any SW
solution covers the entire range of the respective phase
ference given by

2s,cos„c1~x!…<1, ~21a!

21<cos„c2~x!…,2s. ~21b!

Obviouslyv(x) corresponds only to a permitted solutio
if the intensity ~15! is positive and does not exhibit singu
larities. We have to distinguish between the two casesd,1
or d.1 that will lead to in-phase or antiphase solutions,
spectively.

1. d<1 (in-phase solutions)

The denominator in Eq.~15! is always positive at the
boundaries cosc561 @see condition ~21!#. Hence
y

-

f

if-

-

cos~c!.2s is required, which implies anin-phase solution
c1(x), Eqs. ~21!. Two cases have to be distinguished wi
respect tod,1.

~a! d,21. Here, there are no singularities and brig
SW’s may exist for all frequencies and velocities situated
the domain defined by Eqs.~4! provided thatd,21 holds.

~b! 21,d,1. In this case singularities may occur an
to have solutions exist requiress,2A(11d)/2,0.

2. d>1 (antiphase solutions)

For theantiphase solutionc2(x), Eq. ~19b!, the denomi-
nator in Eq.~15! is always negative and consequently the
are no singularities.

The domains corresponding to both cases are uniqu
defined~see Fig. 3!. In particular, regions in the frequency
velocity plane applying to in-phase or antiphase solutions
not overlap. Forudu.1, self-phase modulation can compa
to the energy exchange@see Eqs.~17a! and~7!#. Because the
sign of self-phase modulation depends on the sign of
detuning parameterd, one may expect self-focusing ford.1
and self-defocusing ford,21. As a matter of fact, the an
tiphase solutions emerging ford.1 resemble conventiona
Bragg grating SW’s known from self-focusing Kerr nonlin
earities@20–22#. However, significant differences from th
Kerr case can be identified for the in-phase solutio
~d,21!. We will come back to this issue below. Note th
the detuning parameterudu can only become large if the soli
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ton velocity is not too small@see Eq.~17a!# becauseuDu,1
has to hold.

Domains where SW’s can exist are displayed for b
negative@Fig. 3~a!# and positive wave-vector mismatchq
@Fig. 3~b!#. As already mentioned, we can distinguish b
tween in-phase@Fig. 4~a!# and antiphase solutions@Fig.
4~d!#. In contrast to conventional Bragg grating SW’s@20–
22# the domain where SW’s may exist does not fill the who
area defined by the overlap of the FF and the SH gap@see
Eqs.~4!#. Here internal boundaries emerge where the int
sity diverges. A physical reason for these singularities m
be derived from the fact that at these points the differ
nonlinear contributions to the Hamiltonian cancel each ot
exactly. This decrease of the effective nonlinearity requi
higher intensities for the SW’s to survive leading eventua
to the singularities. By using Eq.~17a! the internal bound-
aries can be determined and are given by

d521 with v.0 for the case 1a, ~22a!

s52A~11d!/2 for the case 1b ~22b!

FIG. 5. Numerically determined domain where bright SW so
tions of the complete system can exist;~a! negative mismatch and
~b! positive mismatch, same parameters as in Fig. 3,k510, v051.
h

-

-
y
t
r
s

and

d51, ~22c!

respectively.
Another internal boundary arises from the fact that t

intensity as a function of the phase difference~15! may attain
a maximum atucos~c!u,1 for certain sets of parameters. Th
leads to the generation of a double-hump SW for in-ph
solutions@Figs. 4~b! and 4~c!# provided that

s.2
31d

4
~23!

holds.
If the SW parameters~v and v! approach the interna

boundaries the intensity~15! at a certainx tends to diverge
and the shape of SW’s changes dramatically. The natur
these changes depends on the type of the internal boun
and on the pointx where the intensity touches the dive
gence. Two different scenarios can be distinguished~see Fig.
3!.

~1! If udu,1 holds @case 1b~22b!# we have a double-
hump in-phase solution@see Eq.~23!# in the vicinity of the
internal boundary. The denominator of Eq.~15! reaches its
minimum at the boundaries ofc @see Eq.~21!# or in the
wings of the SW atx56`. Consequently the intensity in th
tails increases as the pulse width does likewise. The shap
the pulse center resembles a gray soliton@see Fig. 4~b!#.

~2! In contrast, forudu.1 the singularity appears for fi
nite x. Hence the peak intensity increases to infinity a
correspondingly the width decreases if the SW parame
approach an internal boundary. Again in-phase solutions
hibit a double-hump shape. Very close to the boundary
distance between the humps remains constant while
peaks shrink and the SW practically splits into two parts@see
Fig. 4~c!#. Obviously, in cases where the width of the S
shrinks considerably the basic assumption of our analyt
model that the nonlinearity acts locally becomes inval
Hence near the internal boundaries the solutions of the a
lytical model have to be double-checked by the numeri
solution of the basic system~3!.

IV. SOLITARY WAVES—THE GENERAL CASE

In Sec. III analytical solutions of the simplified syste
~7!, which holds for a strong coupling of the SH waves
correspondingly a quasilocal nonlinear response, were s
ied in detail. Now we are going to numerically solve th
complete set of basic equations~3!. The aim is twofold, viz.,
to check the reliability of the analytical solutions and
search for new SW’s if we lift the requirement of stron
coupling and local response. To this end we used a New
iteration scheme where the analytical solutions served as
tial conditions.

For strong coupling of the SH waves~k510! a reasonable
agreement with the previous results could be establis
~compare Figs. 3 and 5!. Both in-phase@see Fig. 6~a!# and
antiphase solutions@see Fig. 6~b!# could be identified even
for large velocities where the analytical approach is n
strictly valid. Although the allowed parameter ranges a
larger than predicted by our model they do not fill the g

-



-
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FIG. 6. Different types of nu-
merically determined SW solu-
tions ~v051!, ~a! antiphase solu-
tion corresponding to Fig. 4~d!,
~b! in-phase solution correspond
ing to Fig. 4~b!, ~c! bistable SW
~in-phase!, and ~d! bistable SW
~antiphase!.
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completely. The existence of internal boundaries within
gap where the solutions diverge could be confirmed. Dou
hump solutions were found in the parameter ranges predi
by the analytical model~see Fig. 6!. The physical picture
provided by the analytical model seems to be even m
general than expected. Even for large velocities or weak c
pling of the SH waves~k51! the essential behavior of th
solutions described above remains unchanged~see Fig. 7!.
But, on the other hand, it is not surprising that the divers
of the SW solutions of the complete system is richer th
predicted by the analytical model. The parameter ra
where antiphase solutions with nonvanishing velocities oc
considerably exceeds the analytically predicted one. Even
a mismatch where antiphase solutions must not exist in
analytical model they were found numerically@compare
Figs. 3~a! and 5~a!#. As far as double-hump SW’s are con
cerned antiphase solutions could be additionally identifi
@see Figs. 5~a! and 7#. Moreover, it turned out that SW’s with
multiple humps may appear and that the SH field is no lon
proportional to the FF field if both coupling constants co
pare~see Fig. 8!.

The strict separation between in-phase and antiphase
lutions could be essentially confirmed by the numerical st
ies without regard to a small overlap region@see Fig. 5~b!#.
Within this region both in-phase and antiphase solutions
ist simultaneously and give rise to bistability@see Figs. 6~c!
and 6~d!#.

To check the robustness of the unconventional dou
hump solutions some of them were propagated numerica
e
e-
ed

re
u-

y
n
e
r
or
e

d

r
-

so-
-

x-

-
y.

No decay could be found for negative SW frequencies, e
if we used an approximate analytical solution as initial d
tribution. In that case long-lived internal oscillation
emerged around the exact stationary solution. Two differ
oscillating modes could be identified. The antisymmet
mode can be related to an exchange between the peak i
sities whereas the breathing of the field shape can be at

FIG. 7. Numerically determined domain for SW solutions if th
coupling strength of FF and SH waves are equal~k51, v051!.
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FIG. 8. Numerically determined multiple-hump solutions for equal coupling of FF and SH~v051!, ~a! antiphase solution and~b! in-phase
solution.

FIG. 9. Propagation of double-hump SW’s,~a! stable propagation, an approximate analytical solution was taken as the initial shape@same
parameters as Fig. 4~b!#, and~b! decay of an unstable solution~k510, q523, v520.7,v50.2!.
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uted to the symmetric-mode@see Fig. 9~a!#.
The situation changes dramatically if positive SW fr

quencies are concerned. We observed a rapid decay o
double-hump solutions where this decay might be due to
growth of the antisymmetric mode@see Fig. 9~b!#.

V. CONCLUSIONS

We have shown that solitary waves consisting of mutua
locked FF and SH components can exist in waveguides m
from quadratic nonlinear materials. The dispersion requi
for their existence can be mimicked by linear coupling in
Bragg grating. It turned out that an analytical solution can
found provided that the coupling constant for the SH wa
considerably exceeds that for the FF waves. In this case
SH waves are slaved by the FF ones corresponding
quasilocal nonlinearity. The resulting equations resem
that for the Kerr nonlinearity but with no cross-phase mod
lation and energy exchange exceeding the self-phase m
lation. This simplified model yields a good qualitative d
scription of the behavior of SW’s in a quadratic nonline
environment. The major results of this model could be c
firmed by direct numerical integration of the complete s
tem of equations. In contrast to conventional Bragg grat
.
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SW’s in a cubic nonlinearity, we found internal boundari
within the domain where SW’s are expected to exist. Th
internal boundaries separate regions where SW’s may
must not exist. Moreover, additional boundaries mark
transition from single- to double-hump solutions where so
of them are stable. Far from the exponential tails all solutio
exhibit a chirp. With regard to the phase difference betwe
forward and backward propagating FF waves in the cente
the SW’s, both in-phase and antiphase solutions occur. T
correspond to SW in cubic materials with defocusing o
focusing cubic nonlinearity, respectively. These two diffe
ent types may even share parts of the parameter space
giving rise to bistability.

Eventually, we mention that the model derived here
well as the basic equations and results likewise hold fo
configuration where the dispersion is provided by the c
pling of copropagating modes with different group velociti
as it appears in asymmetric directional couplers@4#.
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